搜索

在三角形ABC中,角A、B、C所对的边分别为a b c设向量m=(sinA,cosB...

发布网友 发布时间:2024-10-23 21:29

我来回答

2个回答

热心网友 时间:2024-10-27 10:12

1.
向量m=(sinA,cosB),n=(cosA,sinB),m//n
则有sinA* sinB –cosB* cosA=0
即cos(A+B)=0, A+B=π/2,
所以C=π/2

2.
∵向量m⊥向量n
∴向量m•向量n=0
∵向量m=(sinA,cosB),向量n=(cosA,sinB)
∴sinAcosA+cosBsinB=0
∴2sinAcosA+2sinBcosB=0
∴sin(2A)+sin(2B)=0
∵∠B=15°
∴sin(2A)+sin30°=0
∴sin(2A)=-1/2
∵在△ABC中,0°<∠A<165°
∴0°<2∠A<330°
∴2∠A=210°
∴∠A=105°
∴∠C=180°-∠A-∠B=60°
由正弦定理:a/sinA=c/sinC
则c=a(sinC/sinA)=asin60°/sin105°=(√6+√2)[(√3)/2]/[(√6+√2)/4]=2√3.

热心网友 时间:2024-10-27 10:12

解:
∵向量m⊥向量n
∴向量m·向量n=0
∵向量m=(sinA,cosB),向量n=(cosA,sinB)
∴sinAcosA+cosBsinB=0
∴2sinAcosA+2sinBcosB=0
∴sin(2A)+sin(2B)=0
∵∠B=15°
∴sin(2A)+sin30°=0
∴sin(2A)=-1/2
∵在△ABC中,0°<∠A<165°
∴0°<2∠A<330°
∴2∠A=210°
∴∠A=105°
∴∠C=180°-∠A-∠B=60°
由正弦定理:a/sinA=c/sinC
则c=a(sinC/sinA)=asin60°/sin105°=(√6+√2)[(√3)/2]/[(√6+√2)/4]=2√3.
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top